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Executive Summary 

Garbage Collection (GC) is an integral part of 

application behavior on Java platforms, yet it is often 

misunderstood. Java developers need to understand 

how GC works and how the actions they can take in 

selecting and tuning collector mechanisms, as well as 

in application architecture choices, can affect runtime 

performance, scalability and reliability. 

This white paper reviews and classifies the various 

garbage collectors and collection techniques available 

in JVMs today. This paper provides an overview of 

common garbage collection techniques, algorithms 

and defines terms and metrics common to all 

collectors including: 

• Generational 

• Parallel 

• Stop-the-world 

• Incremental 

• Concurrent 

• Mostly-concurrent 
 

The paper classifies each major JVM collector’s 

mechanisms and characteristics and discusses the 

trade-offs involved in balancing requirements for 

responsiveness, throughput, space, and available 

memory across varying scale levels. The paper 

concludes with some pitfalls, common misconceptions, 

and “myths” around garbage collection behavior, as 

well as examples of how certain choices can result in 

impressive application behavior. 

Introduction 

The Java programming language utilizes a managed 

runtime (the Java Virtual Machine, or JVM) to improve 

developer productivity and provide cross-platform 

portability. Because different operating systems and 

hardware platforms vary in the ways that they manage 

memory, the JVM performs this function for the 

developer, allocating memory as objects are created 

and freeing it when they are no longer used. This 

process of freeing unused memory is called ‘garbage 

collection’ (GC), and is performed by the JVM on the 

memory heap during application execution. 

Java garbage collection can have a big impact on 

application performance and throughput. As the JVM 

heap size grows, so does the amount of time that an 

application must pause to allow the JVM to perform 

GC. The result can be long, unexpected pauses that 

can delay transactions, deteriorate application 

throughput, cause user-session time-outs, force nodes 

to fall out of clusters, or result in even more severe 

business-related losses (e.g. drop in revenue or 

damage to reputation). 

This paper explains in more detail how garbage 

collection works, the different algorithm types 

employed by commercially available JVMs, and how 

developers and architects can make better informed 

decisions on which garbage collector to use and how 

to maximize application performance. 

Why Care About the Java Garbage Collector? 

Overall garbage collection is much better and more 

efficient than you might think. It’s much faster than 

malloc() at allocating memory and dead objects cost 

nothing to collect (really!). GC will find all the dead 

objects, even in cyclic graphs, without any assistance 

from the developer. But in many ways garbage 

collection is much more insidious than many 

developers and architects realize. 

For most collectors GC related pauses are proportional 

to size of their heaps which is approximately 1 second 

for each gigabyte of live objects. So, a larger heap 

(which can be advantageous for most apps) means a 
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longer pause. Worse yet, if you run a 20-minute test 

and tune until all the pauses go away, the likelihood is 

that you’ve simply moved the pause to the 21st minute. 

So unfortunately, the pause will still happen, and your 

application will suffer. In addition, the presence of 

garbage collection doesn’t eliminate object leaks — the 

developer still must find and fix references holding 

those leaked objects. 

The good news is Java does provide some level of GC 

control. Developers and architects can make decisions 

that can adjust application performance, due to the 

behavior of the garbage collector. For example, in C++ 

it makes sense to null every reference field when it’s no 

longer needed. However, in a Java program, coding in 

nullifiers everywhere is disastrous and far worse than 

coding in nothing. If every single class uses a finalizer 

to null reference fields, the garbage collector will 

potentially have to perform millions of object 

finalizations per GC cycle — leading to very long 

garbage collection pauses. 

Trying to solve garbage collection at the application 

programming layer is dangerous. It takes a lot of 

practice and understanding to get it right; time that 

could better spent building value-added features. And, 

even if you make all the right decisions, it is likely that 

other code your application leverages will not be 

optimized or the application workload changes over 

time, and your application will still have GC related 

performance issues. 

Also, depending on the characteristics of your 

application, choosing the wrong garbage collector 

type or using the wrong settings can greatly increase 

pause times or even cause out-of-memory crashes. 

With a proper understand of garbage collection and 

what your available options are, you can make better 

informed decisions and product choices that can 

improve the performance and reliability of your 

application at runtime. 

Classifying the Collector 

Garbage collectors are divided into several types. For 

each type, some collectors are categorized as ‘mostly’, 

as in ‘mostly concurrent’. This means that sometimes it 

doesn’t operate according to that classification and has 

a fallback mechanism for when that occurs. So, a 

‘mostly concurrent’ collector may operate concurrently 

with application execution and only occasionally stop-

the-world if needed. 

 
 

Concurrent collector – performs garbage collection 

concurrently while application execution continues. 

Parallel collector – uses multiple threads. A collector 

can be concurrent but not parallel, and it can be 

concurrent AND parallel. (Side note – be cautious when 

researching older literature on garbage collection, 

since what we used to call parallel is now called 

concurrent.) 

Stop-the-world (STW) – is the opposite of concurrent. 

It performs garbage collection while the application is 

completely stopped. 

Incremental – performs garbage collection as a series 

of smaller increments with potentially long gaps in 

between. The application is stopped during garbage 

collection but runs in between increments. 

Moving – the collector moves objects during garbage 

collection and has to update references to those live 

objects. 

Conservative – most non-managed runtimes are 

conservative. In this model, the collector is unsure of 

whether a field is a reference or not, so it assumes that 

it is. This is in contrast to a Precise Collector. 

Precise – a precise collector knows exactly where every 

possible object reference is. A collector cannot be a 

moving collector without also being precise, because 

you have to know which references to fix when you 

move the live objects. Precise collectors identify the 

live objects in the memory heap, reclaim resources 
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held by dead objects and periodically relocate live 

objects. 

Most of the work the virtual machine does to be 

precise, is actually in the compiler, not the collector 

itself. All commercial JVMs today are moving and 

precise. 

 
 

Steps in Garbage Collection 

Before the garbage collector can reclaim memory, it 

must ensure the application is at a ‘GC safepoint’. A GC 

safepoint is a point or range in a thread’s execution 

where the collector can identify all the references in the 

thread’s execution stack. The terms ‘safepoint’ and ‘GC 

safepoint’ are often used interchangeably, however 

many types of safepoints exist, some of which require 

more information than a GC safepoint. A ‘Global 

Safepoint’ is when all application threads are at a 

safepoint. 

Safepoint opportunities in your code should be 

frequent. If the garbage collector has to wait for a 

safepoint that is minutes (or longer) away, your 

application could run out of memory and crash before 

garbage can be collected. Once the GC safepoint is 

reached, garbage collection can begin. 

Mark 

This phase, also known as ‘trace’, finds all the live 

objects in the heap. The process starts from the ‘roots’, 

which includes thread stacks, static variables, special 

references from JNI code and other areas where live 

objects are likely to be found. A reference to an object 

can only prevent the object from being garbage 

collected, if the reference chains from a GC root. 

The garbage collector ‘paints’ any objects it can reach 

as ‘live’. Any objects left at the end of this step are 

‘dead’. If any objects are still reachable that the 

developer thought were dead, it’s an object leak, a 

form of memory leak. 

The work of a marker is linear to the amount of live 

objects and references, regardless of the size of the 

objects. In other words, it takes the marker the same 

amount of time to paint 1,000 10KB objects as 1,000 

1MB objects. 

In concurrent marking all reachable objects are being 

marked as live, but the object graph is mutating (i.e. 

changing) as the marker works. This can lead to a 

classic concurrent marking race. The application can 

move a reference that has not yet been seen by the 

marker into an object that has already been visited. If 

this change is not intercepted or prevented in some 

way, it can corrupt the heap. The object would be 

collected, even though a reference to it still exists. 

Usually a ‘write barrier’ is used to prevent this 

condition. The write barrier captures changes to object 

references (e.g. in a card table) that might otherwise be 

missed by the marker. With this information, the 

marker can revisit all mutated references and track new 

mutations. When the set is small enough, a stop-the-

world pause can be used to catch up, making the 

collector ‘mostly’ concurrent. But it is important to note 

that the collector is sensitive to the mutation rate and 

the amount of work done grows with the mutation rate 

and may fail to finish. 

Sweep 

In this phase the garbage collector scans through the 

heap to identify the locations of ‘dead’ objects and 

tracks their location, usually in some sort of ‘free list’. 

Unlike the Mark phase, the work done by the Sweep 

phase is linear to the size of the heap, not the size of 

the live set. If your application is using a very large 

heap with very little left alive, Sweep still has to scan on 

the entire heap. 

Compact 

Over time, the Java memory heap gets ‘fragmented’, 

where the dead space between objects is no longer 

large enough to hold new objects, making new object 
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allocation slower. If your application 

creates objects of variable sizes, 

fragmentation will happen more quickly. 

XML is a great example of this. The 

format is defined but the size of the 

information in the object is not 

controlled, often leading to objects with 

great variations in sizes and a 

fragmented heap. 

In the Compact phase the garbage 

collector relocates live objects to free up 

contiguous empty space. As these 

objects are moved, the collector must fix 

all references in the threads to these live 

objects, called ‘remapping’. Remap has 

to cover all references that could point to 

an object, so it usually scans everything. 

The amount of work done in this phase is 

generally linear to the size of the live set. 

 

Incremental compaction is used in a couple of 

commercial collectors (Oracle G1 and the Balanced 

Collector from IBM). This technique assumes that some 

regions of memory are more popular than others, 

although this is not always the case depending on the 

application. The GC algorithm tracks cross-region 

remembered sets (i.e. which region points to which). 

This allows the collector to compact a single region at a 

time and only scan regions pointing into it when 

remapping all potential references. The collector 

identifies region sets that fit into limited pause times, 

allowing the maximum time for application interruption 

to be controlled. Large heaps have fewer non-popular 

regions; the number of regions pointing into a single 

region tends to be linear to the size of the heap. 

Because of this, the work for this type of compaction 

can grow with the square of the heap size. 

Types of Collectors 

Mark/Sweep/Compact Collector – performs the three 

phases as three separate steps. 

Mark/Compact Collector – skips the sweep and 

moves live objects to a contiguous area of the heap. 

 

Copying Collector – performs all three phases in one 

pass. A copying collector is pretty aggressive. It uses a 

‘from’ and ‘to’ space and moves all the live objects then  

fixes the references all in one pass. When the ‘from’ 

space is empty the collection is complete. Work done 

in a copying collector is linear to the size of the live set. 

Generational Collectors A generational collector is 

based on the hypothesis that most objects die young. 

The application creates them, but quickly doesn’t need 

them anymore. Often a method creates many objects 

but never stores them in a field. When the method exits 

those objects are ready for garbage collection. The 

developer can set a ‘generational filter’ that reduces 

the rate of allocation into the old generation. This filter 

is the only way to keep up with today’s CPU throughput 

– otherwise applications can create objects much faster 

than garbage collection can clean them up. 

For applications where this hypothesis holds true, it 

makes sense to focus garbage collection efforts on the 

‘young generation’ and promote objects that live long 

enough to an ‘old generation’ which can be garbage 

collected much less frequently as it fills up. 

Because these young generation objects die quickly, 

the live set in the young generation takes up a small 

 

Mark/Sweep/Compact 
 

1x the size of the live  
set plus a little more 

 
 

No 
 

 

Size of heap  
(in sweep) 

No 

 

‘Full’ heaps with little 
free memory; large 

heaps 

Yes 

 

Mark/Compact 

2x the size of the 
live set 

 

No 

 

 
Size of live set 

 

Yes 

 

Heaps that become 
fragmented in 

M/S/C 

Yes 

Amount of 
memory needed 
to perform 
collection 

Monolithic – the 
whole heap must 
be garbage 
collected at once 

Amount of  
work linear to 

Requires large 
amount of ‘free’ 
memory 

Fastest for 

 
 
Fragments the 
heap 

 

Copying 

2x the size of 
the live set 

 

Typically, yes 

 

 
Size of live set 

 
Yes 

 

Low live object 
counts 

 

Yes 

Fig. 1: Comparing collector types 
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percentage of the available space. Thus a moving 

collector makes sense, since we have space in which to 

place live objects and the work done is linear to the 

size of the live set which is small. A generational 

collector doesn’t need memory equal to 2x the live set, 

since objects can spillover into the old generation 

space. This compensates for the main downside of a 

copying collector. You can allow the young generation 

to get completely full before collecting it. 

Deciding when to promote objects can dramatically 

improve efficiency. Keeping objects in the young 

generation a little longer may allow many of them to 

die and save collection time. If you keep them too long 

the young generation can run out of space or ruin the 

generational assumption altogether. Waiting too long 

to promote can also dramatically increase the work 

needed to copy the live objects and therefore the time 

it takes to do GC. 

 

Remembered Set 

Generational collectors use a ‘remembered set’ to 

track all references into the young generation from the 

outside, so the collector doesn’t have to scan for them. 

This set is also used as part of the ‘roots’ for the 

garbage collector. A common technique is ‘card 

marking’, which uses a bit (or byte) indicating that a 

word or region in the old generation is suspect. These 

‘marks’ can be precise or imprecise, meaning it may 

record the exact location or just a region in memory. 

Write barriers are used to track references from the 

young generation into the old generation and keep the 

remembered set up to date. 

Oracle’s HotSpot uses what’s called a ‘blind store’. 

Every time you store a reference it marks a card. This 

works well, because checking the reference takes more 

CPU time, so the system saves time by just marking the 

card. 

Commercial Implementations 

Commercial server-side JVMs typically use a copying 

collector for the young generation that employs a 

monolithic, stop-the-world collection. In other words, 

the collector stops application processing and copies 

the entire live set into a new section of the heap. The 

old generation usually uses a Mark/Sweep/Compact 

collector, which may be stop-the-world, concurrent, 

mostly concurrent, incremental stop-the-world or 

mostly incremental stop-the-world. 

1: Normally, the system wants to be able to get to the 

large live set in the old generation without having to 

stop at some increment. 

1: Translation, in order: it may stop the application entirely to 

perform the collection, perform collection concurrent with 

application processing, collect concurrently with the application up 

to a point when it (for example) gets behind, and has to stop the 

application to catch up, stop the application processing for shorter 

periods to do part of the garbage collection at a time, or it may do 

these incremental collections for as long as possible, before it has to 

stop the application to complete GC. 

 

What Developers and Architects Can Do 

First, understand the characteristics of your 

application and the basics of how garbage 

collection works. 

Garbage Collection Metrics 

Many characteristics of your application will affect 

garbage collection and performance at runtime. First is 

how fast your application is allocating objects in 

memory, or the allocation rate. Next is how long those 

objects live. Do you have a fairly typical application 

where objects die young, or do you have many objects 

that are needed for a long time? Your program may 

also be updating references in memory, called the 

mutation rate. The mutation rate is generally linear to 

the amount of work the application is doing. And 

finally, as objects are created and are dying, another 

set of metrics to track is the live set (also called the 

‘heap population’) and the heap shape, which is the 

shape of the live object graph. 

The mark time and compaction time are the most 

important metrics to track for overall garbage 
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collection cycle time. Mark time is how long it takes for 

the collector to find all live objects on the heap. 

Compaction time is how long it takes to free up 

memory by relocating objects and is only relevant for a 

Mark/Compact collector. For Mark/Sweep/Compact, 

sweep time is also important, which indicates how long 

it takes the collector to locate all the dead objects. 

Cycle time for the collector is the total time from the 

start of garbage collection, until memory is freed and 

available for use by the application. 

The Need for Empty Memory for GC 

Garbage collectors need at least some amount of 

empty memory in order to work. More empty memory 

makes it easier (and faster) for the garbage collector. 

Doubling empty memory halves the work done by the 

collector and halves the CPU consumption needed to 

run. This is often the best tool for efficiency. 

To illustrate, here are a couple of intuitive limits. If we 

have infinite empty memory, we would never have to 

collect and GC would never use any CPU time. If we 

have exactly 1 byte of empty memory at all times, the 

collector would have to work very hard and GC would 

use up 100% of CPU time. Overall, garbage collection 

CPU time follows an approximate 1/x curve between 

these two limits, with effort dropping as empty memory 

increases. 

Mark/Compact and Copying collector work is linear to 

the size of the live set. How often each should run is 

determined by the amount of empty memory. Since 

collection is a fixed amount of work each time, doing 

this work less often is more efficient. In these two types 

of collectors the amount of empty memory available 

doesn’t control the length of the garbage collection 

pause, only the frequency. On the other hand, 

Mark/Sweep/Compact work grows as the heap grows. 

More empty memory for a collector that pauses for 

sweeping, means less frequent but longer pauses. 

Now that we understand what the characteristics are 

for our application, we can make changes that will 

improve performance, scalability and reliability. 

GC Strategy: Delaying the Inevitable 

Although compaction is unavoidable in practice, many 

GC tuning techniques focus on delaying a full GC as 

long as possible and freeing the ‘easy’ empty space as 

quickly as possible. 

Generational garbage collection can be partially 

effective at delaying the inevitable. Young generation 

objects are collected frequently, and this doesn’t take 

much time. But eventually, space in the old generation 

must be reclaimed using a monolithic, stop-the-world 

collection. Another delay strategy is to perform 

concurrent marking and sweeping but skip 

compaction. Freed memory can be tracked in lists and 

reused without moving live objects. But over time this 

will leads to fragmentation, forcing a compaction. 

Finally, some collectors rely on the idea that much of 

the heap is not popular. A non-popular region will only 

be pointed to from a small portion of the overall heap. 

Compaction can be done on non-popular regions 

incrementally with short stop-the-world pauses to free 

up space. However, at some point the popular regions 

will need to be compacted, causing an application 

pause. 

The bottom line is that despite numerous techniques 

and creative ways to tune away garbage collection 

pauses, competition is inevitable with most commercial 

collectors. Developers and architects need to make 

good decisions about which collector to use to 

maximize application performance. 

Oracle’s HotSpot ParallelGC 

This is the default collector for HotSpot. It uses a 

monolithic, stop-the-world copying collector for the 

young generation and a monolithic, stop-the-world 

Mark/Sweep/Compact algorithm for the old 

generation. 
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Oracle’s HotSpot CMS 

The Concurrent Mark/Sweep collector (CMS) is an 

option in HotSpot. It attempts to reduce the old 

generation pauses as much as possible by concurrently 

marking and sweeping the old generation without 

compacting. Once the old generation becomes too 

fragmented, it falls back to a monolithic, stop-the-world 

compaction. 

CMS performs mostly concurrent marking. It marks 

concurrently while the application is running and tracks 

any changes (mutations) in card marks which are 

revisited as needed. CMS also does concurrent 

sweeping, which frees up space occupied by dead 

objects and creates a free list for allocation of new 

objects. When objects can no longer be promoted to 

the old generation or concurrent marking fails, the 

system will throw a ‘promotion failure’ message and/or 

pause for a second or more while it performs 

compaction. 

The young generation uses a monolithic, stop-the-

world copying collector, just like the ParallelGC option. 

 

 
 

Oracle’s HotSpot G1GC (Garbage First) 

G1 is an option in HotSpot. Its goal is to avoid, “as 

much as possible” a full GC. G1 uses a mostly 

concurrent marker for the old generation. It marks 

concurrently as much as possible, then uses a stop-the-

world pause to catch up on mutations and reference 

processing. G1 tracks inter-regional relationships in 

remembered sets and does not use fine-grained free 

lists. It uses stop-the-world, mostly incremental 

compaction and delays compaction of popular objects 

and regions as much as possible. G1 falls back to 

monolithic, stop-the-world full compaction of these 

popular areas when needed. 

 

Collector Name 

ParallelGC 

 
CMS (Concurrent 
Mark/Sweep) 

G1 (Garbage First) 
 
                                      
Balanced 

 
 
Opt throughput 

 

C4 (Continuously Concurrent 
Compacting Collector)   

Young Generation 

Monolithic, stop-the-world,              
copying  

Monolithic, stop-the-world,              
copying  

Monolithic, stop-the-world,             
copying  
 
Monolithic, stop-the-world,              
copying  
 

Monolithic, stop-the-world, copying 

 

Concurrent, compacting 

Oracle’s HotSpot 

 
Oracle’s HotSpot 

 
Oracle’s HotSpot 

 
IBM J9* 

 

IBM J9* 

 

Azul Platform Prime 

 

*Can choose a single 
or 2 generation 
collector 

Old Generation 

Monolithic, stop-the-world, 
Mark/Sweep/Compact 

Mostly concurrent, non-compacting 

Mostly concurrent marker, mostly 
incremental compaction, fall back to 
monolithic stop the world  

Mostly concurrent marker, mostly 
incremental compaction, fall back to 
monolithic stop-the-world  

Parallel Mark/Sweep, stop-the-world 
compaction 

                                                      
Concurrent, compacting 

Choosing a Garbage Collector 

The following table summarizes the types of popular commercially available garbage collectors. 
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The young generation uses a monolithic, stop-the-

world copying collector, just like the ParallelGC and 

CMS options. 

Azul Platform Prime C4 Collector 

C4 (Continuously Concurrent Compacting Collector) is 

the default in Azul Platform Prime. C4 concurrently 

compacts both the young generation and old 

generation. Unlike other algorithms, it is not ‘mostly’ 

concurrent, but fully concurrent, so it never falls back to 

a stop-the-world compaction. 

C4 uses a Load Value Barrier (LVB) to verify each heap 

reference as correct when loaded. Any heap 

references that point to relocated objects are caught 

and fixed in this self-healing barrier. C4 has a 

guaranteed single pass concurrent marker. No matter 

how fast your application mutates the heap, C4 can 

keep up. The C4 collector also performs concurrent 

reference processing (including weak, soft and final 

references) and relocation and remapping are both 

concurrent. C4 also uses ‘quick release’ to make freed 

memory available quickly to the application and for the 

relocation of objects. This enables ‘hand over hand’ 

compaction that does not require empty memory to 

function. 

 

GC Tuning Observations 

Garbage collection tuning for most collectors is hard to 

get right, even when you understand the 

characteristics of your application. The figure below 

shows two sets of tuning parameters for the CMS 

collector in the HotSpot JVM. While they may use 

similar parameter, they are very different and, in some 

areas, diametrically opposed. Yet the performance of 

your application could be optimized with either set, 

depending on its particular characteristics. With most 

collectors no ‘one size fits all’ answer exists. Developers 

and architects have to tune garbage collection 

carefully and retune every time the application, 

environment or anticipated load changes. Getting 

these parameters wrong can cause unexpected, long 

pauses during peak load times. 

However, performance of an application on the Azul 

Zing C4 collector is insensitive to the ‘usual’ tuning 

parameters. Because it marks and compacts 

concurrently in both the young and old generations 

the only important parameter is heap size. 

When you set the heap size in the Azul Prime runtime, 

the C4 collector computes the GC time it needs in 

order to keep up with allocation rates. You do not 

need to set ratios or evacuation times. Zing’s C4 GC 

will fire when needed using threads that are separate 

from your application threads. This allows worst case 

pause times to drop by orders of magnitude compared 

to other GC strategies. 

With GC out of the way, time to safepoint emerges as 

the next dominant source of delays, and even lower 

latencies may be achieved using other controls, 

typically in the OS, or in the JVM through JIT compiler 

adjustment. 
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Summary 

Garbage Collection (GC) is an integral part of 

application behavior on Java platforms, yet it is often 

misunderstood. Java developers can improve 

application performance, scalability and reliability by 

understanding how GC works and by making better 

garbage collector choices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The main drawback of most garbage collectors is the 

need for long application pauses. These pauses are the 

result of an inevitable requirement to compact the 

heap to free up space. Collectors use different 

strategies to delay these events, but compaction is 

inevitable for all commercially available collectors 

except Azul C4, which employs a Continuously 

Concurrent Compacting Collector that avoids pauses 

altogether. 

About Azul  

Azul delivers Java solutions that meet the needs of 

today’s real-time business. Designed and optimized for 

x86 servers and enterprise-class workloads, Azul’s 

Platform Prime is the only Java runtime that supports 

highly consistent and pauseless execution for 

throughput-intensive and QoS-sensitive Java 

applications. Azul’s enhanced Java technologies also 

enable organizations optimize the value of their capital 

investments while ensuring that their human capital is 

free to generate new features, unlocking creativity and 

driving competitive advantage. 
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Appendix A: Garbage Collection Terminology 

Compaction The garbage collection phase that 

defragments the heap, moves objects in memory, 

remaps all affected references and frees contiguous 

memory regions. 

 

Concurrent A type of garbage collection algorithm 

that where GC is done while the application is running. 

 

Copying A garbage collector that copies that performs 

mark/sweep/compact all at once by copying live 

objects to a new area in memory. 

 

Dead object An object that is no longer being 

referenced by the application. 

 

GC safepoint A point or range in a thread’s execution 

where the collector can identify all the references in the 

thread’s execution stack. 

 

Generational Objects in memory are split between a 

young generation and old generation and garbage 

collected separately. 

 

Incremental Garbage collects only a portion of the 

heap at a time. 

 

Live object One that is still being referenced by the 

application. 

 

Marking The garbage collection phase that identifies 

all live objects in the heap. 

 

Monolithic Garbage collects the entire heap at once. 

Mutator Your application, which is changing (mutating) 

references in memory. 

 

Mutator Your application, which is changing 

(mutating) references in memory. 

 

Parallel A collector that uses multiple threads. 

 

Pause Time period when the application is stopped 

while garbage collection is occurring. 

 

 

 

 

Precise A precise collector knows exactly where every 

possible object reference is. 

 

Promotion Allocating an object from the young 

generation to the old generation of the heap. 

 

Remembered Set Tracks all references into the young 

generation from the outside so the collector doesn’t 

have to scan for them. 

 

Roots Starting points for the garbage collector to find 

live objects. 

 

Stop-the-World Indicates that the garbage collector 

stops application processing to collect the heap. 

 

Sweeping The garbage collection phase that locates 

dead objects. 
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