

 1

High-Performance Microservices Using Java

Technology Whitepaper

Understanding Java

Garbage Collection

2 Understanding Java Garbage Collection

Executive Summary

Garbage Collection (GC) is an integral part of

application behavior on Java platforms, yet it is often

misunderstood. Java developers need to understand

how GC works and how the actions they can take in

selecting and tuning collector mechanisms, as well as

in application architecture choices, can affect runtime

performance, scalability and reliability.

This white paper reviews and classifies the various

garbage collectors and collection techniques available

in JVMs today. This paper provides an overview of

common garbage collection techniques, algorithms

and defines terms and metrics common to all

collectors including:

• Generational

• Parallel

• Stop-the-world

• Incremental

• Concurrent

• Mostly-concurrent

The paper classifies each major JVM collector’s

mechanisms and characteristics and discusses the

trade-offs involved in balancing requirements for

responsiveness, throughput, space, and available

memory across varying scale levels. The paper

concludes with some pitfalls, common misconceptions,

and “myths” around garbage collection behavior, as

well as examples of how certain choices can result in

impressive application behavior.

Introduction

The Java programming language utilizes a managed

runtime (the Java Virtual Machine, or JVM) to improve

developer productivity and provide cross-platform

portability. Because different operating systems and

hardware platforms vary in the ways that they manage

memory, the JVM performs this function for the

developer, allocating memory as objects are created

and freeing it when they are no longer used. This

process of freeing unused memory is called ‘garbage

collection’ (GC), and is performed by the JVM on the

memory heap during application execution.

Java garbage collection can have a big impact on

application performance and throughput. As the JVM

heap size grows, so does the amount of time that an

application must pause to allow the JVM to perform

GC. The result can be long, unexpected pauses that

can delay transactions, deteriorate application

throughput, cause user-session time-outs, force nodes

to fall out of clusters, or result in even more severe

business-related losses (e.g. drop in revenue or

damage to reputation).

This paper explains in more detail how garbage

collection works, the different algorithm types

employed by commercially available JVMs, and how

developers and architects can make better informed

decisions on which garbage collector to use and how

to maximize application performance.

Why Care About the Java Garbage Collector?

Overall garbage collection is much better and more

efficient than you might think. It’s much faster than

malloc() at allocating memory and dead objects cost

nothing to collect (really!). GC will find all the dead

objects, even in cyclic graphs, without any assistance

from the developer. But in many ways garbage

collection is much more insidious than many

developers and architects realize.

For most collectors GC related pauses are proportional

to size of their heaps which is approximately 1 second

for each gigabyte of live objects. So, a larger heap

(which can be advantageous for most apps) means a

This paper explains in more detail how garbage

collection works, the different algorithm types

employed by commercially available JVMs, and

how developers and architects can make better

informed decisions

3 Understanding Java Garbage Collection

longer pause. Worse yet, if you run a 20-minute test

and tune until all the pauses go away, the likelihood is

that you’ve simply moved the pause to the 21st minute.

So unfortunately, the pause will still happen, and your

application will suffer. In addition, the presence of

garbage collection doesn’t eliminate object leaks — the

developer still must find and fix references holding

those leaked objects.

The good news is Java does provide some level of GC

control. Developers and architects can make decisions

that can adjust application performance, due to the

behavior of the garbage collector. For example, in C++

it makes sense to null every reference field when it’s no

longer needed. However, in a Java program, coding in

nullifiers everywhere is disastrous and far worse than

coding in nothing. If every single class uses a finalizer

to null reference fields, the garbage collector will

potentially have to perform millions of object

finalizations per GC cycle — leading to very long

garbage collection pauses.

Trying to solve garbage collection at the application

programming layer is dangerous. It takes a lot of

practice and understanding to get it right; time that

could better spent building value-added features. And,

even if you make all the right decisions, it is likely that

other code your application leverages will not be

optimized or the application workload changes over

time, and your application will still have GC related

performance issues.

Also, depending on the characteristics of your

application, choosing the wrong garbage collector

type or using the wrong settings can greatly increase

pause times or even cause out-of-memory crashes.

With a proper understand of garbage collection and

what your available options are, you can make better

informed decisions and product choices that can

improve the performance and reliability of your

application at runtime.

Classifying the Collector

Garbage collectors are divided into several types. For

each type, some collectors are categorized as ‘mostly’,

as in ‘mostly concurrent’. This means that sometimes it

doesn’t operate according to that classification and has

a fallback mechanism for when that occurs. So, a

‘mostly concurrent’ collector may operate concurrently

with application execution and only occasionally stop-

the-world if needed.

Concurrent collector – performs garbage collection

concurrently while application execution continues.

Parallel collector – uses multiple threads. A collector

can be concurrent but not parallel, and it can be

concurrent AND parallel. (Side note – be cautious when

researching older literature on garbage collection,

since what we used to call parallel is now called

concurrent.)

Stop-the-world (STW) – is the opposite of concurrent.

It performs garbage collection while the application is

completely stopped.

Incremental – performs garbage collection as a series

of smaller increments with potentially long gaps in

between. The application is stopped during garbage

collection but runs in between increments.

Moving – the collector moves objects during garbage

collection and has to update references to those live

objects.

Conservative – most non-managed runtimes are

conservative. In this model, the collector is unsure of

whether a field is a reference or not, so it assumes that

it is. This is in contrast to a Precise Collector.

Precise – a precise collector knows exactly where every

possible object reference is. A collector cannot be a

moving collector without also being precise, because

you have to know which references to fix when you

move the live objects. Precise collectors identify the

live objects in the memory heap, reclaim resources

4 Understanding Java Garbage Collection

held by dead objects and periodically relocate live

objects.

Most of the work the virtual machine does to be

precise, is actually in the compiler, not the collector

itself. All commercial JVMs today are moving and

precise.

Steps in Garbage Collection

Before the garbage collector can reclaim memory, it

must ensure the application is at a ‘GC safepoint’. A GC

safepoint is a point or range in a thread’s execution

where the collector can identify all the references in the

thread’s execution stack. The terms ‘safepoint’ and ‘GC

safepoint’ are often used interchangeably, however

many types of safepoints exist, some of which require

more information than a GC safepoint. A ‘Global

Safepoint’ is when all application threads are at a

safepoint.

Safepoint opportunities in your code should be

frequent. If the garbage collector has to wait for a

safepoint that is minutes (or longer) away, your

application could run out of memory and crash before

garbage can be collected. Once the GC safepoint is

reached, garbage collection can begin.

Mark

This phase, also known as ‘trace’, finds all the live

objects in the heap. The process starts from the ‘roots’,

which includes thread stacks, static variables, special

references from JNI code and other areas where live

objects are likely to be found. A reference to an object

can only prevent the object from being garbage

collected, if the reference chains from a GC root.

The garbage collector ‘paints’ any objects it can reach

as ‘live’. Any objects left at the end of this step are

‘dead’. If any objects are still reachable that the

developer thought were dead, it’s an object leak, a

form of memory leak.

The work of a marker is linear to the amount of live

objects and references, regardless of the size of the

objects. In other words, it takes the marker the same

amount of time to paint 1,000 10KB objects as 1,000

1MB objects.

In concurrent marking all reachable objects are being

marked as live, but the object graph is mutating (i.e.

changing) as the marker works. This can lead to a

classic concurrent marking race. The application can

move a reference that has not yet been seen by the

marker into an object that has already been visited. If

this change is not intercepted or prevented in some

way, it can corrupt the heap. The object would be

collected, even though a reference to it still exists.

Usually a ‘write barrier’ is used to prevent this

condition. The write barrier captures changes to object

references (e.g. in a card table) that might otherwise be

missed by the marker. With this information, the

marker can revisit all mutated references and track new

mutations. When the set is small enough, a stop-the-

world pause can be used to catch up, making the

collector ‘mostly’ concurrent. But it is important to note

that the collector is sensitive to the mutation rate and

the amount of work done grows with the mutation rate

and may fail to finish.

Sweep

In this phase the garbage collector scans through the

heap to identify the locations of ‘dead’ objects and

tracks their location, usually in some sort of ‘free list’.

Unlike the Mark phase, the work done by the Sweep

phase is linear to the size of the heap, not the size of

the live set. If your application is using a very large

heap with very little left alive, Sweep still has to scan on

the entire heap.

Compact

Over time, the Java memory heap gets ‘fragmented’,

where the dead space between objects is no longer

large enough to hold new objects, making new object

5 Understanding Java Garbage Collection

allocation slower. If your application

creates objects of variable sizes,

fragmentation will happen more quickly.

XML is a great example of this. The

format is defined but the size of the

information in the object is not

controlled, often leading to objects with

great variations in sizes and a

fragmented heap.

In the Compact phase the garbage

collector relocates live objects to free up

contiguous empty space. As these

objects are moved, the collector must fix

all references in the threads to these live

objects, called ‘remapping’. Remap has

to cover all references that could point to

an object, so it usually scans everything.

The amount of work done in this phase is

generally linear to the size of the live set.

Incremental compaction is used in a couple of

commercial collectors (Oracle G1 and the Balanced

Collector from IBM). This technique assumes that some

regions of memory are more popular than others,

although this is not always the case depending on the

application. The GC algorithm tracks cross-region

remembered sets (i.e. which region points to which).

This allows the collector to compact a single region at a

time and only scan regions pointing into it when

remapping all potential references. The collector

identifies region sets that fit into limited pause times,

allowing the maximum time for application interruption

to be controlled. Large heaps have fewer non-popular

regions; the number of regions pointing into a single

region tends to be linear to the size of the heap.

Because of this, the work for this type of compaction

can grow with the square of the heap size.

Types of Collectors

Mark/Sweep/Compact Collector – performs the three

phases as three separate steps.

Mark/Compact Collector – skips the sweep and

moves live objects to a contiguous area of the heap.

Copying Collector – performs all three phases in one

pass. A copying collector is pretty aggressive. It uses a

‘from’ and ‘to’ space and moves all the live objects then

fixes the references all in one pass. When the ‘from’

space is empty the collection is complete. Work done

in a copying collector is linear to the size of the live set.

Generational Collectors A generational collector is

based on the hypothesis that most objects die young.

The application creates them, but quickly doesn’t need

them anymore. Often a method creates many objects

but never stores them in a field. When the method exits

those objects are ready for garbage collection. The

developer can set a ‘generational filter’ that reduces

the rate of allocation into the old generation. This filter

is the only way to keep up with today’s CPU throughput

– otherwise applications can create objects much faster

than garbage collection can clean them up.

For applications where this hypothesis holds true, it

makes sense to focus garbage collection efforts on the

‘young generation’ and promote objects that live long

enough to an ‘old generation’ which can be garbage

collected much less frequently as it fills up.

Because these young generation objects die quickly,

the live set in the young generation takes up a small

Mark/Sweep/Compact

1x the size of the live
set plus a little more

No

Size of heap
(in sweep)

No

‘Full’ heaps with little
free memory; large

heaps

Yes

Mark/Compact

2x the size of the
live set

No

Size of live set

Yes

Heaps that become
fragmented in

M/S/C

Yes

Amount of
memory needed
to perform
collection

Monolithic – the
whole heap must
be garbage
collected at once

Amount of
work linear to

Requires large
amount of ‘free’
memory

Fastest for

Fragments the
heap

Copying

2x the size of
the live set

Typically, yes

Size of live set

Yes

Low live object
counts

Yes

Fig. 1: Comparing collector types

6 Understanding Java Garbage Collection

percentage of the available space. Thus a moving

collector makes sense, since we have space in which to

place live objects and the work done is linear to the

size of the live set which is small. A generational

collector doesn’t need memory equal to 2x the live set,

since objects can spillover into the old generation

space. This compensates for the main downside of a

copying collector. You can allow the young generation

to get completely full before collecting it.

Deciding when to promote objects can dramatically

improve efficiency. Keeping objects in the young

generation a little longer may allow many of them to

die and save collection time. If you keep them too long

the young generation can run out of space or ruin the

generational assumption altogether. Waiting too long

to promote can also dramatically increase the work

needed to copy the live objects and therefore the time

it takes to do GC.

Remembered Set

Generational collectors use a ‘remembered set’ to

track all references into the young generation from the

outside, so the collector doesn’t have to scan for them.

This set is also used as part of the ‘roots’ for the

garbage collector. A common technique is ‘card

marking’, which uses a bit (or byte) indicating that a

word or region in the old generation is suspect. These

‘marks’ can be precise or imprecise, meaning it may

record the exact location or just a region in memory.

Write barriers are used to track references from the

young generation into the old generation and keep the

remembered set up to date.

Oracle’s HotSpot uses what’s called a ‘blind store’.

Every time you store a reference it marks a card. This

works well, because checking the reference takes more

CPU time, so the system saves time by just marking the

card.

Commercial Implementations

Commercial server-side JVMs typically use a copying

collector for the young generation that employs a

monolithic, stop-the-world collection. In other words,

the collector stops application processing and copies

the entire live set into a new section of the heap. The

old generation usually uses a Mark/Sweep/Compact

collector, which may be stop-the-world, concurrent,

mostly concurrent, incremental stop-the-world or

mostly incremental stop-the-world.

1: Normally, the system wants to be able to get to the

large live set in the old generation without having to

stop at some increment.

1: Translation, in order: it may stop the application entirely to

perform the collection, perform collection concurrent with

application processing, collect concurrently with the application up

to a point when it (for example) gets behind, and has to stop the

application to catch up, stop the application processing for shorter

periods to do part of the garbage collection at a time, or it may do

these incremental collections for as long as possible, before it has to

stop the application to complete GC.

What Developers and Architects Can Do

First, understand the characteristics of your

application and the basics of how garbage

collection works.

Garbage Collection Metrics

Many characteristics of your application will affect

garbage collection and performance at runtime. First is

how fast your application is allocating objects in

memory, or the allocation rate. Next is how long those

objects live. Do you have a fairly typical application

where objects die young, or do you have many objects

that are needed for a long time? Your program may

also be updating references in memory, called the

mutation rate. The mutation rate is generally linear to

the amount of work the application is doing. And

finally, as objects are created and are dying, another

set of metrics to track is the live set (also called the

‘heap population’) and the heap shape, which is the

shape of the live object graph.

The mark time and compaction time are the most

important metrics to track for overall garbage

7 Understanding Java Garbage Collection

collection cycle time. Mark time is how long it takes for

the collector to find all live objects on the heap.

Compaction time is how long it takes to free up

memory by relocating objects and is only relevant for a

Mark/Compact collector. For Mark/Sweep/Compact,

sweep time is also important, which indicates how long

it takes the collector to locate all the dead objects.

Cycle time for the collector is the total time from the

start of garbage collection, until memory is freed and

available for use by the application.

The Need for Empty Memory for GC

Garbage collectors need at least some amount of

empty memory in order to work. More empty memory

makes it easier (and faster) for the garbage collector.

Doubling empty memory halves the work done by the

collector and halves the CPU consumption needed to

run. This is often the best tool for efficiency.

To illustrate, here are a couple of intuitive limits. If we

have infinite empty memory, we would never have to

collect and GC would never use any CPU time. If we

have exactly 1 byte of empty memory at all times, the

collector would have to work very hard and GC would

use up 100% of CPU time. Overall, garbage collection

CPU time follows an approximate 1/x curve between

these two limits, with effort dropping as empty memory

increases.

Mark/Compact and Copying collector work is linear to

the size of the live set. How often each should run is

determined by the amount of empty memory. Since

collection is a fixed amount of work each time, doing

this work less often is more efficient. In these two types

of collectors the amount of empty memory available

doesn’t control the length of the garbage collection

pause, only the frequency. On the other hand,

Mark/Sweep/Compact work grows as the heap grows.

More empty memory for a collector that pauses for

sweeping, means less frequent but longer pauses.

Now that we understand what the characteristics are

for our application, we can make changes that will

improve performance, scalability and reliability.

GC Strategy: Delaying the Inevitable

Although compaction is unavoidable in practice, many

GC tuning techniques focus on delaying a full GC as

long as possible and freeing the ‘easy’ empty space as

quickly as possible.

Generational garbage collection can be partially

effective at delaying the inevitable. Young generation

objects are collected frequently, and this doesn’t take

much time. But eventually, space in the old generation

must be reclaimed using a monolithic, stop-the-world

collection. Another delay strategy is to perform

concurrent marking and sweeping but skip

compaction. Freed memory can be tracked in lists and

reused without moving live objects. But over time this

will leads to fragmentation, forcing a compaction.

Finally, some collectors rely on the idea that much of

the heap is not popular. A non-popular region will only

be pointed to from a small portion of the overall heap.

Compaction can be done on non-popular regions

incrementally with short stop-the-world pauses to free

up space. However, at some point the popular regions

will need to be compacted, causing an application

pause.

The bottom line is that despite numerous techniques

and creative ways to tune away garbage collection

pauses, competition is inevitable with most commercial

collectors. Developers and architects need to make

good decisions about which collector to use to

maximize application performance.

Oracle’s HotSpot ParallelGC

This is the default collector for HotSpot. It uses a

monolithic, stop-the-world copying collector for the

young generation and a monolithic, stop-the-world

Mark/Sweep/Compact algorithm for the old

generation.

8 Understanding Java Garbage Collection

Oracle’s HotSpot CMS

The Concurrent Mark/Sweep collector (CMS) is an

option in HotSpot. It attempts to reduce the old

generation pauses as much as possible by concurrently

marking and sweeping the old generation without

compacting. Once the old generation becomes too

fragmented, it falls back to a monolithic, stop-the-world

compaction.

CMS performs mostly concurrent marking. It marks

concurrently while the application is running and tracks

any changes (mutations) in card marks which are

revisited as needed. CMS also does concurrent

sweeping, which frees up space occupied by dead

objects and creates a free list for allocation of new

objects. When objects can no longer be promoted to

the old generation or concurrent marking fails, the

system will throw a ‘promotion failure’ message and/or

pause for a second or more while it performs

compaction.

The young generation uses a monolithic, stop-the-

world copying collector, just like the ParallelGC option.

Oracle’s HotSpot G1GC (Garbage First)

G1 is an option in HotSpot. Its goal is to avoid, “as

much as possible” a full GC. G1 uses a mostly

concurrent marker for the old generation. It marks

concurrently as much as possible, then uses a stop-the-

world pause to catch up on mutations and reference

processing. G1 tracks inter-regional relationships in

remembered sets and does not use fine-grained free

lists. It uses stop-the-world, mostly incremental

compaction and delays compaction of popular objects

and regions as much as possible. G1 falls back to

monolithic, stop-the-world full compaction of these

popular areas when needed.

Collector Name

ParallelGC

CMS (Concurrent
Mark/Sweep)

G1 (Garbage First)

Balanced

Opt throughput

C4 (Continuously Concurrent
Compacting Collector)

Young Generation

Monolithic, stop-the-world,
copying

Monolithic, stop-the-world,
copying

Monolithic, stop-the-world,
copying

Monolithic, stop-the-world,
copying

Monolithic, stop-the-world, copying

Concurrent, compacting

Oracle’s HotSpot

Oracle’s HotSpot

Oracle’s HotSpot

IBM J9*

IBM J9*

Azul Platform Prime

*Can choose a single
or 2 generation
collector

Old Generation

Monolithic, stop-the-world,
Mark/Sweep/Compact

Mostly concurrent, non-compacting

Mostly concurrent marker, mostly
incremental compaction, fall back to
monolithic stop the world

Mostly concurrent marker, mostly
incremental compaction, fall back to
monolithic stop-the-world

Parallel Mark/Sweep, stop-the-world
compaction

Concurrent, compacting

Choosing a Garbage Collector

The following table summarizes the types of popular commercially available garbage collectors.

9 Understanding Java Garbage Collection

The young generation uses a monolithic, stop-the-

world copying collector, just like the ParallelGC and

CMS options.

Azul Platform Prime C4 Collector

C4 (Continuously Concurrent Compacting Collector) is

the default in Azul Platform Prime. C4 concurrently

compacts both the young generation and old

generation. Unlike other algorithms, it is not ‘mostly’

concurrent, but fully concurrent, so it never falls back to

a stop-the-world compaction.

C4 uses a Load Value Barrier (LVB) to verify each heap

reference as correct when loaded. Any heap

references that point to relocated objects are caught

and fixed in this self-healing barrier. C4 has a

guaranteed single pass concurrent marker. No matter

how fast your application mutates the heap, C4 can

keep up. The C4 collector also performs concurrent

reference processing (including weak, soft and final

references) and relocation and remapping are both

concurrent. C4 also uses ‘quick release’ to make freed

memory available quickly to the application and for the

relocation of objects. This enables ‘hand over hand’

compaction that does not require empty memory to

function.

GC Tuning Observations

Garbage collection tuning for most collectors is hard to

get right, even when you understand the

characteristics of your application. The figure below

shows two sets of tuning parameters for the CMS

collector in the HotSpot JVM. While they may use

similar parameter, they are very different and, in some

areas, diametrically opposed. Yet the performance of

your application could be optimized with either set,

depending on its particular characteristics. With most

collectors no ‘one size fits all’ answer exists. Developers

and architects have to tune garbage collection

carefully and retune every time the application,

environment or anticipated load changes. Getting

these parameters wrong can cause unexpected, long

pauses during peak load times.

However, performance of an application on the Azul

Zing C4 collector is insensitive to the ‘usual’ tuning

parameters. Because it marks and compacts

concurrently in both the young and old generations

the only important parameter is heap size.

When you set the heap size in the Azul Prime runtime,

the C4 collector computes the GC time it needs in

order to keep up with allocation rates. You do not

need to set ratios or evacuation times. Zing’s C4 GC

will fire when needed using threads that are separate

from your application threads. This allows worst case

pause times to drop by orders of magnitude compared

to other GC strategies.

With GC out of the way, time to safepoint emerges as

the next dominant source of delays, and even lower

latencies may be achieved using other controls,

typically in the OS, or in the JVM through JIT compiler

adjustment.

10 Understanding Java Garbage Collection

Summary

Garbage Collection (GC) is an integral part of

application behavior on Java platforms, yet it is often

misunderstood. Java developers can improve

application performance, scalability and reliability by

understanding how GC works and by making better

garbage collector choices.

The main drawback of most garbage collectors is the

need for long application pauses. These pauses are the

result of an inevitable requirement to compact the

heap to free up space. Collectors use different

strategies to delay these events, but compaction is

inevitable for all commercially available collectors

except Azul C4, which employs a Continuously

Concurrent Compacting Collector that avoids pauses

altogether.

About Azul

Azul delivers Java solutions that meet the needs of

today’s real-time business. Designed and optimized for

x86 servers and enterprise-class workloads, Azul’s

Platform Prime is the only Java runtime that supports

highly consistent and pauseless execution for

throughput-intensive and QoS-sensitive Java

applications. Azul’s enhanced Java technologies also

enable organizations optimize the value of their capital

investments while ensuring that their human capital is

free to generate new features, unlocking creativity and

driving competitive advantage.

11 Understanding Java Garbage Collection

Appendix A: Garbage Collection Terminology

Compaction The garbage collection phase that

defragments the heap, moves objects in memory,

remaps all affected references and frees contiguous

memory regions.

Concurrent A type of garbage collection algorithm

that where GC is done while the application is running.

Copying A garbage collector that copies that performs

mark/sweep/compact all at once by copying live

objects to a new area in memory.

Dead object An object that is no longer being

referenced by the application.

GC safepoint A point or range in a thread’s execution

where the collector can identify all the references in the

thread’s execution stack.

Generational Objects in memory are split between a

young generation and old generation and garbage

collected separately.

Incremental Garbage collects only a portion of the

heap at a time.

Live object One that is still being referenced by the

application.

Marking The garbage collection phase that identifies

all live objects in the heap.

Monolithic Garbage collects the entire heap at once.

Mutator Your application, which is changing (mutating)

references in memory.

Mutator Your application, which is changing

(mutating) references in memory.

Parallel A collector that uses multiple threads.

Pause Time period when the application is stopped

while garbage collection is occurring.

Precise A precise collector knows exactly where every

possible object reference is.

Promotion Allocating an object from the young

generation to the old generation of the heap.

Remembered Set Tracks all references into the young

generation from the outside so the collector doesn’t

have to scan for them.

Roots Starting points for the garbage collector to find

live objects.

Stop-the-World Indicates that the garbage collector

stops application processing to collect the heap.

Sweeping The garbage collection phase that locates

dead objects.

Contact Azul

To discover how Azul Platform Prime can

improve scalability, consistency and

performance of all your Java deployments.

385 Moffett Park Drive, Suite 115

Sunnyvale, CA 94089 USA

 +1.650.230.6500

www.azul.com

info@azul.com

© 2021 Azul Systems, Inc 6-21v1

http://www.azul.com/
http://www.azul.com/
mailto:info@azul.com
mailto:info@azul.com

	Technology Whitepaper
	Understanding Java Garbage Collection
	Types of Collectors
	What Developers and Architects Can Do First, understand the characteristics of your application and the basics of how garbage collection works.
	Appendix A: Garbage Collection Terminology

